论文标题

检测和跟踪天气雷达数据中的公共鸟栖息

Detecting and Tracking Communal Bird Roosts in Weather Radar Data

论文作者

Cheng, Zezhou, Gabriel, Saadia, Bhambhani, Pankaj, Sheldon, Daniel, Maji, Subhransu, Laughlin, Andrew, Winkler, David

论文摘要

在过去的20年中,美国天气雷达档案馆拥有有关大气中生物学现象的详细信息。在夜间栖息地,在夜间栖息的位置集体栖息的鸟类聚集在一起,而它们从栖息的早晨出埃及记在雷达图像中通常可以看作是一种独特的模式。本文介绍了一种机器学习系统,以检测和跟踪天气雷达数据中的栖息地。一个重大的挑战是,标签是从以前的研究中进行了机会,并且标签样式存在系统的差异。我们为潜在变量模型和EM算法提供了贡献,以学习检测模型以及单个注释者的标签样式模型。通过正确考虑这些变化,我们学会了更准确的检测器。最终的系统检测到以前未知的栖息地,并提供了有关整个美国栖息地的全面时空数据。这些数据将为生物学家提供有关广泛栖息地使用的现象和在非繁殖季节的共同栖息鸟类的运动的重要信息。

The US weather radar archive holds detailed information about biological phenomena in the atmosphere over the last 20 years. Communally roosting birds congregate in large numbers at nighttime roosting locations, and their morning exodus from the roost is often visible as a distinctive pattern in radar images. This paper describes a machine learning system to detect and track roost signatures in weather radar data. A significant challenge is that labels were collected opportunistically from previous research studies and there are systematic differences in labeling style. We contribute a latent variable model and EM algorithm to learn a detection model together with models of labeling styles for individual annotators. By properly accounting for these variations we learn a significantly more accurate detector. The resulting system detects previously unknown roosting locations and provides comprehensive spatio-temporal data about roosts across the US. This data will provide biologists important information about the poorly understood phenomena of broad-scale habitat use and movements of communally roosting birds during the non-breeding season.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源