论文标题

周期图的分散关系中全球极值的本地测试

A local test for global extrema in the dispersion relation of a periodic graph

论文作者

Berkolaiko, Gregory, Canzani, Yaiza, Cox, Graham, Marzuola, Jeremy L.

论文摘要

我们考虑了一个周期性紧密结合模型(组合图)的家族,这些模型具有最小的基本域副本之间的链接。对于这个家庭,我们建立了第二个衍生物类型的局部状况,在该条件下,分散关系的临界点可以被认为是全球最大值或最小值。在时间反向对称性的额外假设下,我们表明,如果周期性组的维度为三个或更少,或者(在任何维度上),如果临界点是floquet--- floquet-- bloch家族的对称点,则实际上,分散带的任何局部极值实际上都是其全球极值。我们证明我们的结果几乎是最佳的,其中有许多示例。

We consider a family of periodic tight-binding models (combinatorial graphs) that have the minimal number of links between copies of the fundamental domain. For this family we establish a local condition of second derivative type under which the critical points of the dispersion relation can be recognized as global maxima or minima. Under the additional assumption of time-reversal symmetry, we show that any local extremum of a dispersion band is in fact its global extremum if the dimension of the periodicity group is three or less, or (in any dimension) if the critical point in question is a symmetry point of the Floquet--Bloch family with respect to complex conjugation. We demonstrate that our results are nearly optimal with a number of examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源