论文标题

黑盒对抗攻击策略,具有可调节的稀疏性和对深图像分类器的普遍性

A Black-box Adversarial Attack Strategy with Adjustable Sparsity and Generalizability for Deep Image Classifiers

论文作者

Ghosh, Arka, Mullick, Sankha Subhra, Datta, Shounak, Das, Swagatam, Mallipeddi, Rammohan, Das, Asit Kr.

论文摘要

为深神经网络构建对抗性扰动是研究的重要方向。使用白盒反馈制作图像依赖性对抗扰动一直是这种对抗性攻击的规范。但是,对于实际应用,黑框攻击更为实用。由于其先天的普遍性,适用于多个图像的普遍扰动正在越来越受欢迎。还努力将扰动限制为图像中的一些像素。这有助于保持视觉相似性,使原始图像难以检测到这种攻击。本文标志着结合了所有这些研究方向的重要步骤。我们提出了仅使用目标网络中的黑盒反馈来构建有效的通用像素限制扰动的欺骗算法。我们使用在最新的深神经分类器上设置的成像网验证进行实证研究,方法是改变从图像中的所有像素的薄弱的10像素到所有像素的高度。我们发现,使用Deveit在图像中仅扰动大约10%的像素可以在保留视觉质量的同时获得值得称赞且高度可转移的愚蠢率。我们进一步证明,欺骗也可以成功地应用于图像依赖的攻击。在两组实验中,我们的表现都优于几种最先进的方法。

Constructing adversarial perturbations for deep neural networks is an important direction of research. Crafting image-dependent adversarial perturbations using white-box feedback has hitherto been the norm for such adversarial attacks. However, black-box attacks are much more practical for real-world applications. Universal perturbations applicable across multiple images are gaining popularity due to their innate generalizability. There have also been efforts to restrict the perturbations to a few pixels in the image. This helps to retain visual similarity with the original images making such attacks hard to detect. This paper marks an important step which combines all these directions of research. We propose the DEceit algorithm for constructing effective universal pixel-restricted perturbations using only black-box feedback from the target network. We conduct empirical investigations using the ImageNet validation set on the state-of-the-art deep neural classifiers by varying the number of pixels to be perturbed from a meagre 10 pixels to as high as all pixels in the image. We find that perturbing only about 10% of the pixels in an image using DEceit achieves a commendable and highly transferable Fooling Rate while retaining the visual quality. We further demonstrate that DEceit can be successfully applied to image dependent attacks as well. In both sets of experiments, we outperformed several state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源