论文标题
贝叶斯的区域十年可预测性方法:高维线性逆逆逆模型的稀疏参数估计
A Bayesian approach to regional decadal predictability: Sparse parameter estimation in high-dimensional linear inverse models of high-latitude sea surface temperature variability
论文作者
论文摘要
随机还原模型是气候系统中的重要工具,其许多空间和时间尺度无法完全离散或基本物理可能无法充分考虑。简化模型的一种形式,即线性逆模型(LIM)已被广泛用于区域气候可预测性研究 - 通常将更多地集中在热带或中纬度研究上。但是,大多数LIM拟合技术都依赖于从波动散动理论得出的点估计技术。在这项方法学研究中,我们探讨了贝叶斯推理技术对LIM参数估计海面温度(SST)的使用,以量化高纬度贝叶斯LIM模型的熟练decadal可预测性。我们表明,与LIM型模型的传统点估计方法相比,贝叶斯方法提供了更好的校准概率技能,同时由于先前分布在高维问题中的正则化效应而提供了更好的点估计值。我们比较了(1)在完美模型实验中估算参数值的效果以及最大似然估计值,以及(2)使用社区地球系统模型(CESM)的工业前控制运行(CESM)生成经过校准的1年SST异常预测分布。最后,我们采用大量的概率技能指标来确定LIM可以在高纬度处预测SST异常的程度。我们发现,先前分布的选择对估计结果有明显的影响,并且强调物理相关属性的先验可以增强模型捕获SST异常变异性的能力。
Stochastic reduced models are an important tool in climate systems whose many spatial and temporal scales cannot be fully discretized or underlying physics may not be fully accounted for. One form of reduced model, the linear inverse model (LIM), has been widely used for regional climate predictability studies - typically focusing more on tropical or mid-latitude studies. However, most LIM fitting techniques rely on point estimation techniques deriving from fluctuation-dissipation theory. In this methodological study we explore the use of Bayesian inference techniques for LIM parameter estimation of sea surface temperature (SST), to quantify the skillful decadal predictability of Bayesian LIM models at high latitudes. We show that Bayesian methods, when compared to traditional point estimation methods for LIM-type models, provide better calibrated probabilistic skill, while simultaneously providing better point estimates due to the regularization effect of the prior distribution in high-dimensional problems. We compare the effect of several priors, as well as maximum likelihood estimates, on (1) estimating parameter values on a perfect model experiment and (2) producing calibrated 1-year SST anomaly forecast distributions using a pre-industrial control run of the Community Earth System Model (CESM). Finally, we employ a host of probabilistic skill metrics to determine the extent to which a LIM can forecast SST anomalies at high latitudes. We find that the choice of prior distribution has an appreciable impact on estimation outcomes, and priors that emphasize physically relevant properties enhance the model's ability to capture variability of SST anomalies.