论文标题

完整的椭圆形嵌入和复曲面突变

Full Ellipsoid Embeddings and Toric Mutations

论文作者

Casals, Roger, Vianna, Renato

论文摘要

本文介绍了一种新方法,该方法通过在复合和几乎是曲折的品种中采用多层突变来构建4维椭圆形的体积符号嵌入。该结构均匀地回收了McDuff-Schlenk的斐波那契楼梯,Frenkel-Muller的Pell楼梯和Cristofaro-Gardiner-Kleinman的楼梯,并添加了Ellipsoid嵌入的新的Infinite序列。此外,我们启动了对几乎是振动的符合性热带曲线的研究,并强调了与Quiver Compinatorics的联系。

This article introduces a new method to construct volume-filling symplectic embeddings of 4-dimensional ellipsoids by employing polytope mutations in toric and almost-toric varieties. The construction uniformly recovers the full sequences for the Fibonacci Staircase of McDuff-Schlenk, the Pell Staircase of Frenkel-Muller and the Cristofaro-Gardiner-Kleinman's Staircase, and adds new infinite sequences of ellipsoid embeddings. In addition, we initiate the study of symplectic tropical curves for almost-toric fibrations and emphasize the connection to quiver combinatorics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源