论文标题

用于稀疏非线性编程的Lagrange-Newton算法

A Lagrange-Newton Algorithm for Sparse Nonlinear Programming

论文作者

Zhao, Chen, Xiu, Naihua, Qi, Hou-Duo, Luo, Ziyan

论文摘要

稀疏的非线性编程(SNP)问题在信号和图像处理,机器学习,模式识别,财务和管理等方面具有广泛的应用。但是,由于涉及非概念和不连续的$ \ ell_0 $ norm,SNP构成的计算挑战尚未得到很好的解决。在本文中,我们通过开发快速的牛顿型算法来解决这一数字挑战。作为一个理论基石,我们基于Lagrangian功能的强$β$ -Lagrangangian Startarity的概念为SNP建立了一阶最佳条件,并将其重新制定为称为Lagrangian方程的非线性方程式系统。讨论了相应的雅各比式的非语言性,然后根据该算法(LNA)提出了该算法。在轻度条件下,我们建立了局部二次收敛性和LNA的迭代复杂性估计。为了进一步证明我们提出的算法的效率和优势,我们使用LNA来解决由压缩感应和稀疏高阶投资组合选择引起的两个特定的应用问题,其中从LNA中的牛顿步骤受到限制性益处。

The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning, pattern recognition, finance and management, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous $\ell_0$-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong $β$-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange-Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and the iterative complexity estimation of LNA. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to solve two specific application problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step in LNA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源