论文标题
在运算符转换的扩展
On an extension of operator transforms
论文作者
论文摘要
我们介绍了希尔伯特太空运营商$ t $的$λ$ -MEAN变换$M_λ(T)$,以扩展某些基于Duggal Transform $ T^D $ by $m_λ(t)的操作员变换的扩展:=λt +(1-λ)t^d $,并呈现了其本质上的一些属性。除其他事项外,我们在原始操作员$ t $方面获得了$λ$ -MEAN变换$m_λ(t)$的运算符和数值半径的估计。
We introduce the $λ$-mean transform $M_λ(T)$ of a Hilbert space operator $T$ as an extension of some operator transforms based on the Duggal transform $T^D$ by $M_λ(T) := λT + (1-λ)T^D$, and present some of its essentially properties. Among other things, we obtain estimates for the operator norm and numerical radius of the $λ$-mean transform $M_λ(T)$ in terms of the original operator $T$.