论文标题

使用离散注释的核心分辨率积极学习

Active Learning for Coreference Resolution using Discrete Annotation

论文作者

Li, Belinda Z., Stanovsky, Gabriel, Zettlemoyer, Luke

论文摘要

我们通过要求注释者确定提及前提的核心分辨率的积极学习的成对注释来改进,如果提到对不被认为不是核心。这种简单的修改与新颖的提及的聚类算法相结合,以选择标记的示例,就每个注释预算获得的绩效而言,更有效。在使用现有基准Coreference数据集的实验中,我们表明,来自此其他问题的信号会导致每个人类退伍时的绩效增长。未来的工作可以使用我们的注释协议来有效地开发新领域的核心模型。我们的代码可在https://github.com/belindal/discrete-active-learning-coref上公开获取。

We improve upon pairwise annotation for active learning in coreference resolution, by asking annotators to identify mention antecedents if a presented mention pair is deemed not coreferent. This simple modification, when combined with a novel mention clustering algorithm for selecting which examples to label, is much more efficient in terms of the performance obtained per annotation budget. In experiments with existing benchmark coreference datasets, we show that the signal from this additional question leads to significant performance gains per human-annotation hour. Future work can use our annotation protocol to effectively develop coreference models for new domains. Our code is publicly available at https://github.com/belindal/discrete-active-learning-coref .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源