论文标题
在学习组合模式上,以帮助大规模航空公司乘员配对优化
On Learning Combinatorial Patterns to Assist Large-Scale Airline Crew Pairing Optimization
论文作者
论文摘要
航空公司乘员配对优化(CPO)旨在生成一组法律飞行序列(机组人员配对),以最低成本覆盖航空公司的飞行时间表。它通常是使用列生成(CG)(一种用于引导搜索空间探索的数学编程技术)进行的。 CG利用了在优化搜索过程中生成新变量(配对)的当前和前面CG-介质之间的相互依赖性。但是,随着新兴飞行网络的前所未有的规模和复杂性,必须在飞行连接图中学习高阶相互依赖性,并利用这些相互依存关系,以增强CPO的功效。首先,本文与最先进的是与最先进的差异相比,本文提出了对通过搜索空间勘探获得的飞行空间勘探获得的合理组合模式的变化图自动编码器的新颖调整,该数据是由航空公司乘员配对的优化器,由aircratioum和Averium开发的。最终的飞行连接预测是使用新颖的启发式式的即时合并的,以生成优化器的新配对。在大规模(超过4200次飞行),现实世界中,美国航空公司的复杂飞行网络上证明了该方法的实用性,其特征是多个集线器和辐条子网和几个机组人员基地。
Airline Crew Pairing Optimization (CPO) aims at generating a set of legal flight sequences (crew pairings), to cover an airline's flight schedule, at minimum cost. It is usually performed using Column Generation (CG), a mathematical programming technique for guided search-space exploration. CG exploits the interdependencies between the current and the preceding CG-iteration for generating new variables (pairings) during the optimization-search. However, with the unprecedented scale and complexity of the emergent flight networks, it has become imperative to learn higher-order interdependencies among the flight-connection graphs, and utilize those to enhance the efficacy of the CPO. In first of its kind and what marks a significant departure from the state-of-the-art, this paper proposes a novel adaptation of the Variational Graph Auto-Encoder for learning plausible combinatorial patterns among the flight-connection data obtained through the search-space exploration by an Airline Crew Pairing Optimizer, AirCROP (developed by the authors and validated by the research consortium's industrial sponsor, GE Aviation). The resulting flight-connection predictions are combined on-the-fly using a novel heuristic to generate new pairings for the optimizer. The utility of the proposed approach is demonstrated on large-scale (over 4200 flights), real-world, complex flight-networks of US-based airlines, characterized by multiple hub-and-spoke subnetworks and several crew bases.