论文标题

三角矩阵环上的淤泥模块

Silting Modules over Triangular Matrix Rings

论文作者

Gao, Hanpeng, Huang, Zhaoyong

论文摘要

令$λ,γ$为戒指,$ r = \ left(\ begin {array} {cc}λ&0 \\ m&γ\ end {array} \ right)$带有$ m $ a $ a $(γ,λ)$ bimodule的三角形矩阵环。令$ x $为正确的$λ$ -MODULE和$ y $ a右$γ$ - 模块。我们证明,$(x,0)$ \ oplus $$(y \otimes_γm,y)$是silting右$ r $ -Module,并且仅当$x_λ$和$y_γ$都是淤积模块和$ y \ y \ y \ y \y_γm$。此外,我们证明,如果$λ$和$γ$在代数封闭的字段上是有限维代数,而$x_λ$和$y_γ$有限地生成,那么$(x,0)$ \ oplus $ $ $y_γ$是支持$τ$ - tilting模块,$ \hom_λ(y \otimes_γm,τx)= 0 $和$ \hom_λ(eλ,y \otimes_γm)= 0 $ with $ e $ the $ e $ themimal iDempotent the maximal iDempotent,以便$ \hom_λ(eλ,x)= 0 $。

Let $Λ,Γ$ be rings and $R=\left(\begin{array}{cc}Λ& 0 \\ M & Γ\end{array}\right)$ the triangular matrix ring with $M$ a $(Γ,Λ)$-bimodule. Let $X$ be a right $Λ$-module and $Y$ a right $Γ$-module. We prove that $(X, 0)$$\oplus$$(Y\otimes_ΓM, Y)$ is a silting right $R$-module if and only if both $X_Λ$ and $Y_Γ$ are silting modules and $Y\otimes_ΓM$ is generated by $X$. Furthermore, we prove that if $Λ$ and $Γ$ are finite dimensional algebras over an algebraically closed field and $X_Λ$ and $Y_Γ$ are finitely generated, then $(X, 0)$$\oplus$$(Y\otimes_ΓM, Y)$ is a support $τ$-tilting $R$-module if and only if both $X_Λ$ and $Y_Γ$ are support $τ$-tilting modules, $\Hom_Λ(Y\otimes_ΓM,τX)=0$ and $\Hom_Λ(eΛ, Y\otimes_ΓM)=0$ with $e$ the maximal idempotent such that $\Hom_Λ(eΛ, X)=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源