论文标题

Lipschitz空间上的普通功能很弱$^\ ast $连续

Normal functionals on Lipschitz spaces are weak$^\ast$ continuous

论文作者

Aliaga, Ramón J., Pernecká, Eva

论文摘要

令$ \ operatorname {lip} _0(m)$为Lipschitz的空间,在基本点消失的完整度量空间$ m $上。我们表明,$ \ operatorname {lip} _0(m)^\ ast $中的每个普通功能都是弱$^*$连续的,回答了N. Weaver的问题。

Let $\operatorname{Lip}_0(M)$ be the space of Lipschitz functions on a complete metric space $M$ that vanish at a base point. We show that every normal functional in $\operatorname{Lip}_0(M)^\ast$ is weak$^*$ continuous, answering a question by N. Weaver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源