论文标题
无线电动多用户移动边缘计算的实时资源分配,能源和任务因果关系
Real-Time Resource Allocation for Wireless Powered Multiuser Mobile Edge Computing With Energy and Task Causality
论文作者
论文摘要
本文考虑了无线电动的多源移动边缘计算(MEC)系统,其中多重Aantenna混合访问点(AP)无线为多个用户充电,每个用户都依靠收获的能量来执行计算任务。我们共同优化了AP处的能量波束成形和远程任务执行,以及本地计算和任务卸载,旨在最大程度地减少有限时间范围内的总系统能量消耗,但要获得能源收集和任务到达的因果关系的限制。特别是,我们考虑使用随意任务状态信息(TSI)和渠道状态信息(CSI)的实用场景,即仅当前和先前的TSI和CSI可用,但是只能预测未来的TSI和CSI,只能遵守某些错误。为了解决这个实时资源分配问题,我们提出了一种脱机优化启发的在线设计方法。首先,我们通过假设TSI和CSI是完全已知的A-Priori来考虑离线优化案例。在这种情况下,能量最小化问题对应于凸问题,该问题通过Lagrange二元方法获得了半锁定形式的最佳解决方案。接下来,受到最佳离线解决方案的启发,我们通过与顺序优化集成,在实际情况下提出了基于滑动窗口的在线资源分配设计。最后,数值结果表明,与考虑一定尺寸或没有这种关节优化的尺寸的滑动窗口相比,提议的关节无线驱动MEC设计显着提高了系统的能源效率。
This paper considers a wireless powered multiuser mobile edge computing (MEC) system, in which a multi-antenna hybrid access point (AP) wirelessly charges multiple users, and each user relies on the harvested energy to execute computation tasks. We jointly optimize the energy beamforming and remote task execution at the AP, as well as the local computing and task offloading, aiming to minimize the total system energy consumption over a finite time horizon, subject to causality constraints for both energy harvesting and task arrival at the users. In particular, we consider a practical scenario with casual task state information (TSI) and channel state information (CSI), i.e., only the current and previous TSI and CSI are available, but the future TSI and CSI can only be predicted subject to certain errors. To solve this real-time resource allocation problem, we propose an offline-optimization inspired online design approach. First, we consider the offline optimization case by assuming that the TSI and CSI are perfectly known a-priori. In this case, the energy minimization problem corresponds to a convex problem, for which the semi-closed-form optimal solution is obtained via the Lagrange duality method. Next, inspired by the optimal offline solution, we propose a sliding-window based online resource allocation design in practical cases by integrating with the sequential optimization. Finally, numerical results show that the proposed joint wireless powered MEC designs significantly improve the system's energy efficiency, as compared with the benchmark schemes that consider a sliding window of size one or without such joint optimization.