论文标题

关键超级流和$ ϕ_0 $状态用于探测持续的旋转螺旋

Critical supercurrent and $ϕ_0$ state for probing a persistent spin helix

论文作者

Alidoust, Mohammad

论文摘要

从理论上讲,我们研究了二维的约瑟夫森连接中的超电流的轮廓,以及在采面田的存在下,rashba-dresselhaus旋转轨道相互作用(RDSOI)。通过调查自偏的超电流(所谓的$φ_0$ -Josephson State),我们获得了相对于rdsoi参数($ $φ_0$状态)的明确表达式,相对于rdsoi参数($ $α,β$)和平面Zeeman Zeeman Zeeman Field Encements($ H_X,H_X,H__Y $)。我们的发现表明,当化学势($μ$)与超导电极的能量差距($δ$)相比,即具有相同优势的$μ\ggδ$,rsoi和dsoi,具有相同优势($ | |α| = | |β| $),导致消失的$ $ $;一个具有不等组件的Zeeman字段,即$ | h_x | \ neq | h_y | $,但是,尽管$μ\simδ$,但同等强度rdsois(仅用于一种类型)的破坏性影响,尽管$ \simΔ$,尽管$ | h_x | h_x | h_x | h_y | h_y | h_y | $仍然可以消除$ $ $ $ $ $ qum $ qum $ qum $ qumpoud。值得注意的是,在$μ\simδ$限制中,$φ_0$状态与平面内Zeeman字段的两个组件的乘法成正比,即$ H_XH_Y $,它在$ \ gg ggδ$限制中不存在。此外,我们的临界超电流结果表明,持续的旋转螺旋可以在足够高的化学势能状态$μ\ggδ$中揭示,而相反的态度,即$μ\simδ$,引入了不利影响。在弹道制度中,临界超高潮的“最大”发生在$ |α| = |β| $,Zeeman场可以提高此功能。疾病和非磁杂质的存在急剧改变了这张图片,因此临界超流的“最小值”发生在对称线$ |α| = |β| $周围及其周围。

We theoretically study the profile of a supercurrent in two-dimensional Josephson junctions with Rashba-Dresselhaus spin-orbit interaction (RDSOI) in the presence of a Zeeman field. Through investigating self-biased supercurrent (so called $φ_0$-Josephson state), we obtain explicit expressions for the functionality of the $φ_0$ state with respect to RDSOI parameters ($α,β$) and in-plane Zeeman field components ($h_x,h_y$). Our findings reveal that, when the chemical potential ($μ$) is high enough compared to the energy gap ($Δ$) in superconducting electrodes, i.e., $μ\gg Δ$, RSOI and DSOI with equal strengths ($|α|=|β|$) cause vanishing $φ_0$ state independent of magnetization and the type of RDSOI. A Zeeman field with unequal components, i.e., $|h_x|\neq |h_y|$, however, can counteract and nullify the destructive impact of equal-strength RDSOIs (for one type only), where $μ\simΔ$, although $|h_x|= |h_y|$ can still eliminate the $φ_0$ state. Remarkably, in the $μ\simΔ$ limit, the $φ_0$ state is proportional to the multiplication of both components of an in-plane Zeeman field, i.e., $h_xh_y$, which is absent in the $μ\gg Δ$ limit. Furthermore, our results of critical supercurrents demonstrate that the persistent spin helices can be revealed in a high enough chemical potential regime $μ\gg Δ$, while an opposite regime, i.e., $μ\simΔ$, introduces an adverse effect. In the ballistic regime, the "maximum" of the critical supercurrent occurs at $|α|=|β|$ and the Zeeman field can boost this feature. The presence of disorder and nonmagnetic impurities change this picture drastically so the "minimum" of the critical supercurrent occurs at and around the symmetry lines $|α|=|β|$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源