论文标题

kosterlitz-无尽的阶段和$ z_d $拓扑量子阶段

Kosterlitz-Thouless phase and $Z_d$ topological quantum phase

论文作者

Zarei, Mohammad Hossein

论文摘要

众所周知,在多体波函数的振幅中编码经典自旋模型的玻尔兹曼权重可以提供量子模型,其相结构的特征是使用经典的相变。特别是,这种对应关系可以导致找到与众所周知的经典相对应的新量子相。在这里,我们在D-State Clock模型中研究了Kosterlitz- thouless(KT)阶段的此问题,在该阶段中,我们找到了通过在Kitaev曲折代码的D级版本上应用局部可逆转换构建的相应量子模型。特别是,我们显示了这种量子模型中的基态保真度映射到时钟模型的热容量。因此,我们在模型中确定了扩展的拓扑相变,从某种意义上说,对于$ d \ geq 5 $,在$ z_d $拓扑阶段和琐碎阶段之间出现了类似KT的量子相。然后,使用对时钟模型中的相关函数的映射,我们引入了一个可观察到的量子模型的非本地(字符串),该量子模型在$ z_d $拓扑阶段中相应字符串的两个端点之间的距离呈指数衰减,而它在kt样阶段显示了幂律行为。最后,使用众所周知的D-State时钟模型的过渡温度,我们提供了证据表明,尽管$ z_d $拓扑阶段的稳定性和类似KT的阶段的稳定性通过增加D而增加,但KT样阶段比大d的$ z_d $拓扑阶段更稳定。

It has been known that encoding Boltzmann weights of a classical spin model in amplitudes of a many-body wave function can provide quantum models whose phase structure is characterized by using classical phase transitions. In particular, such correspondence can lead to find new quantum phases corresponding to well-known classical phases. Here, we investigate this problem for Kosterlitz-Thouless (KT) phase in the d-state clock model where we find a corresponding quantum model constructed by applying a local invertible transformation on a d-level version of Kitaev's Toric code. In particular, we show the ground state fidelity in such quantum model is mapped to the heat capacity of the clock model. Accordingly, we identify an extended topological phase transition in our model in a sense that, for $d \geq 5$, a KT-like quantum phase emerges between a $Z_d$ topological phase and a trivial phase. Then, using a mapping to the correlation function in the clock model, we introduce a non-local (string) observable for the quantum model which exponentially decays in terms of distance between two endpoints of the corresponding string in the $Z_d$ topological phase while it shows a power law behavior in the KT-like phase. Finally, using well-known transition temperatures for d-state clock model we give evidences to show that while stability of both $Z_d$ topological phase and the KT-like phase increases by increasing d, the KT-like phase is even more stable than the $Z_d$ topological phase for large d.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源