论文标题

DP-Finite Fields V:有限重量的拓扑字段

Dp-finite fields V: topological fields of finite weight

论文作者

Johnson, Will

论文摘要

我们证明,不稳定的DP-FINITE领域承认可定义的V-Topologies。结果,DP-FINITE场的Henselian猜想意味着Shelah的猜想是DP-FINITE场的猜想。从概念上讲,这可以更简单地证明了积极特征的DP-FINITE领域的分类。 对于$ n \ ge 1 $,我们定义了一个本地类“ $ W_n $ - topological Fields”,概括V-Topological Fields。 $ W_1 $ - 学术与V-Topology是同一件事,而$ W_N $ - 学术是一些更高的类似物。如果$ k $是一个不稳定的DP-FINITE字段,则规范拓扑是$ n = \ operatatorName {dp-rk}(k)$的可定义的$ W_N $ -TOPOLOGY。每个$ w_n $ -Topology具有1到$ n $ coarsenings,这是V-Topology。如果给定的$ W_N $ - 学术在某些结构上是可以定义的,那么V-Topological Coarsenings也是如此。

We prove that unstable dp-finite fields admit definable V-topologies. As a consequence, the henselianity conjecture for dp-finite fields implies the Shelah conjecture for dp-finite fields. This gives a conceptually simpler proof of the classification of dp-finite fields of positive characteristic. For $n \ge 1$, we define a local class of "$W_n$-topological fields", generalizing V-topological fields. A $W_1$-topology is the same thing as a V-topology, and a $W_n$-topology is some higher-rank analogue. If $K$ is an unstable dp-finite field, then the canonical topology is a definable $W_n$-topology for $n = \operatorname{dp-rk}(K)$. Every $W_n$-topology has between 1 and $n$ coarsenings that are V-topologies. If the given $W_n$-topology is definable in some structure, then so are the V-topological coarsenings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源