论文标题
通过信息几何分析揭示的有效激子运输的基础原则
Principles underlying efficient exciton transport unveiled by information-geometric analysis
论文作者
论文摘要
我们从信息几何学领域进行调整技术,我们表明,光合网络中普遍存在的Frenkel Ickiton Transport的开放量子系统模型属于一种称为“ sloppy”的数学模型。进行基于Fisher信息的多参数敏感性分析以研究系统的全部动力学演变并揭示这种滑坡,我们确定了运输网络的哪些特征是有效性能的核心。我们发现,对网络中的激发能的微调通常比优化网络几何形状更为重要,并且这些结论对于不同的效率度量以及模型参数在参数典型的分子复合物中涉及光合作用涉及的分子复合物中的疾病时会得出。我们的方法和见解同样适用于量子运输的其他物理实现。
Adapting techniques from the field of information geometry, we show that open quantum system models of Frenkel exciton transport, a prevalent process in photosynthetic networks, belong to a class of mathematical models known as 'sloppy'. Performing a Fisher-information-based multi-parameter sensitivity analysis to investigate the full dynamical evolution of the system and reveal this sloppiness, we establish which features of a transport network lie at the heart of efficient performance. We find that fine tuning the excitation energies in the network is generally far more important than optimizing the network geometry and that these conclusions hold for different measures of efficiency and when model parameters are subject to disorder within parameter regimes typical of molecular complexes involved in photosynthesis. Our approach and insights are equally applicable to other physical implementations of quantum transport.