论文标题

椭圆形曲线具有GALOIS稳定的循环亚组4

Elliptic curves with Galois-stable cyclic subgroups of order 4

论文作者

Pomerance, Carl, Schaefer, Edward F.

论文摘要

超过$ {\ bf q} $的无限多个椭圆曲线具有4个命令的稳定循环亚组。此类子组成对成对,与$ n_i(x)的子组相交。让$ n_i(x)$表示椭圆形曲线的数量$ {\ bf q} $ $ i $ i $ i $ i $ i $ i $ i,和高度最多$ x $。在本文中,我们表明$ n_1(x)= c_ {1,1} x^{1/3}+c_ {1,2} x^{1/6}+o(x^{0.105})$。我们还显示为$ x \ to \ infty $,$ n_2(x)= c_ {2,1} x^{1/6}+o(x^{1/12})$,错误项的确切性质与riemann Zeta Zeta-Zeta-Zeta-Zeta-Zeta-Zeta-Zeta-Zeta-prientation。在这里,$ c_ {1,1} = 0.95740 \ ldots $,$ c_ {1,2} = - 0.87125 \ ldots $,和$ c_ {2,1} = 0.035515 \ ldots $是可计算的常数。最后,我们证明$ n_i(x)= 0 $ for $ i> 2 $(鉴于椭圆曲线具有6个循环子组4的订单4)。

Infinitely many elliptic curves over ${\bf Q}$ have a Galois-stable cyclic subgroup of order 4. Such subgroups come in pairs, which intersect in their subgroups of order 2. Let $N_i(X)$ denote the number of elliptic curves over ${\bf Q}$ with at least $i$ pairs of Galois-stable cyclic subgroups of order 4, and height at most $X$. In this article we show that $N_1(X) = c_{1,1}X^{1/3}+c_{1,2}X^{1/6}+O(X^{0.105})$. We also show, as $X\to \infty$, that $N_2(X)=c_{2,1}X^{1/6}+o(X^{1/12})$, the precise nature of the error term being related to the prime number theorem and the zeros of the Riemann zeta-function in the critical strip. Here, $c_{1,1}= 0.95740\ldots$, $c_{1,2}=- 0.87125\ldots$, and $c_{2,1}= 0.035515\ldots$ are calculable constants. Lastly, we show that $N_i(X)=0$ for $i > 2$ (the result being trivial for $i>3$ given that an elliptic curve has 6 cyclic subgroups of order 4).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源