论文标题

学习问筛选问题以进行职位发布

Learning to Ask Screening Questions for Job Postings

论文作者

Shi, Baoxu, Li, Shan, Yang, Jaewon, Kazdagli, Mustafa Emre, He, Qi

论文摘要

在LinkedIn,我们希望为全球劳动力中的每个人创造经济机会。该目标的一个关键方面是将工作与合格的申请人相匹配。为了提高雇用效率并减少手动筛查每个申请人的需求,我们开发了一个新产品,招聘人员可以在线提出筛查问题,以便他们可以轻松过滤合格的候选人。为了将筛选问题添加到LinkedIn的所有20美元的活动作业中,我们提出了一项新任务,旨在自动为给定的职位发布筛选问题。为了解决产生筛选问题的任务,我们开发了一个称为Job2Questions的两阶段深度学习模型,我们使用深度学习模型从文本描述中检测出意图,然后根据其他上下文特征来对其重要性进行对检测到的意图。由于这是一个没有历史数据的新产品,因此我们采用深入的转移学习来培训具有有限培训数据的复杂模型。我们向LinkedIn用户推出了筛选问题产品和AI模型,并观察到在就业市场上产生了重大影响。在我们的在线A/B测试期间,我们观察到$+53.10 \%$筛选问题建议接受率,$+22.17 \%$ $ $ $+190 \%$ $ $ $招募者 - 招聘交互,$++11 $ net启动子分数。总而言之,部署的Job2Questions模型可帮助招聘人员找到合格的申请人和求职者,以找到他们有资格的工作。

At LinkedIn, we want to create economic opportunity for everyone in the global workforce. A critical aspect of this goal is matching jobs with qualified applicants. To improve hiring efficiency and reduce the need to manually screening each applicant, we develop a new product where recruiters can ask screening questions online so that they can filter qualified candidates easily. To add screening questions to all $20$M active jobs at LinkedIn, we propose a new task that aims to automatically generate screening questions for a given job posting. To solve the task of generating screening questions, we develop a two-stage deep learning model called Job2Questions, where we apply a deep learning model to detect intent from the text description, and then rank the detected intents by their importance based on other contextual features. Since this is a new product with no historical data, we employ deep transfer learning to train complex models with limited training data. We launched the screening question product and our AI models to LinkedIn users and observed significant impact in the job marketplace. During our online A/B test, we observed $+53.10\%$ screening question suggestion acceptance rate, $+22.17\%$ job coverage, $+190\%$ recruiter-applicant interaction, and $+11$ Net Promoter Score. In sum, the deployed Job2Questions model helps recruiters to find qualified applicants and job seekers to find jobs they are qualified for.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源