论文标题

曲线的定向毛茸茸的图形和模量空间

Oriented hairy graphs and moduli spaces of curves

论文作者

Andersson, Assar, Willwacher, Thomas, Zivkovic, Marko

论文摘要

我们讨论由带有外腿的定向无环图形成的图形复合物。该复合物特别是带有色带图复合物的地图计算点$ \ mathcal m_ {g,n} $的模量空间的(紧凑支持的)共同体,从而扩大了Merkulov-Willwacher的较早结果。此外,根据chan-galatius-payne,它是$ \ Mathcal {M} _ {M} _ {M} _ {M} _ {M} _ {M} $的毛状图0计算重量0的一部分。因此,我们可以自然地连接木 - 加拉图斯 - 佩恩(Chan-Galatius-Payne)和默克洛夫·威尔瓦切(Merkulov-Willwacher)和色带图复合物,并获得相当令人满意的图片,说明所有碎片和各种图形复合物如何将其融合在一起,至少以零为零。

We discuss a graph complex formed by directed acyclic graphs with external legs. This complex comes in particular with a map to the ribbon graph complex computing the (compactly supported) cohomology of the moduli space of points $\mathcal M_{g,n}$, extending an earlier result of Merkulov-Willwacher. It is furthermore quasi-isomorphic to the hairy graph complex computing the weight 0 part of the compactly supported cohomology of $\mathcal{M}_{g,n}$ according to Chan-Galatius-Payne. Hence we can naturally connect the works Chan-Galatius-Payne and of Merkulov-Willwacher and the ribbon graph complex and obtain a fairly satisfying picture of how all the pieces and various graph complexes fit together, at least in weight zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源