论文标题

在表面上的Navier-Stokes方程式上

On the Navier-Stokes equations on surfaces

论文作者

Pruess, Jan, Simonett, Gieri, Wilke, Mathias

论文摘要

我们考虑了不可压缩的粘性流体的运动,该运动完全涵盖了平滑,紧凑和嵌入式的超出表面$σ$,而无需边界并沿$σ$流动。 $ l_p $ - $ l_q $ -maximal的规律性的框架中建立了当地的适合度。我们将一组平衡表征为$σ$上所有杀死向量场的集合,我们表明$σ$上的每个平衡都是稳定的。此外,显示出任何启动接近平衡的溶液均在全球存在,并以指数速率收敛至(可能不同)的平衡,因为时间趋于无穷大。

We consider the motion of an incompressible viscous fluid that completely covers a smooth, compact and embedded hypersurface $Σ$ without boundary and flows along $Σ$. Local-in-time well-posedness is established in the framework of $L_p$-$L_q$-maximal regularity. We characterize the set of equilibria as the set of all Killing vector fields on $Σ$ and we show that each equilibrium on $Σ$ is stable. Moreover, it is shown that any solution starting close to an equilibrium exists globally and converges at an exponential rate to a (possibly different) equilibrium as time tends to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源