论文标题
在因上下文中的高斯线性模型选择
Gaussian linear model selection in a dependent context
论文作者
论文摘要
在本文中,当误差过程是一个依赖的高斯过程时,我们研究非参数线性模型。我们通过模型选择方法专注于平均向量的估计。我们首先给出了惩罚函数的一般理论形式,以确保模型集合中的惩罚估计器满足甲骨文不平等。然后,我们得出涉及误差协方差矩阵的光谱半径的惩罚形状,当误差过程静止且较短范围依赖时,该误差矩阵的光谱半径可以与维度成比例。但是,在某些情况下,这种惩罚可能太粗糙了,特别是当错误过程依赖于误差过程时。在第二部分中,假设误差过程是固定的高斯过程,我们将重点放在固定设计回归模型上。我们提出了一个模型选择程序,以便通过常规分区上的分段多项式估算平均函数,而误差过程既取决于短距离,远距离依赖或反势力。根据过程的记忆,我们会提出各种惩罚。对于每种情况,都会构建自适应估计器,并计算收敛速率。多亏了几组模拟,我们研究了这些不同类型的错误(短记忆,长期记忆和反持续错误)的这些不同惩罚的绩效。最后,我们将方法应用于著名的尼罗河数据,该数据清楚地表明,必须考虑错误过程的依赖类型。
In this paper, we study the nonparametric linear model, when the error process is a dependent Gaussian process. We focus on the estimation of the mean vector via a model selection approach. We first give the general theoretical form of the penalty function, ensuring that the penalized estimator among a collection of models satisfies an oracle inequality. Then we derive a penalty shape involving the spectral radius of the covariance matrix of the errors, which can be chosen proportional to the dimension when the error process is stationary and short range dependent. However, this penalty can be too rough in some cases, in particular when the error process is long range dependent. In a second part, we focus on the fixed-design regression model assuming that the error process is a stationary Gaussian process. We propose a model selection procedure in order to estimate the mean function via piecewise polynomials on a regular partition, when the error process is either short range dependent, long range dependent or anti-persistent. We present different kinds of penalties, depending on the memory of the process. For each case, an adaptive estimator is built, and the rates of convergence are computed. Thanks to several sets of simulations, we study the performance of these different penalties for all types of errors (short memory, long memory and anti-persistent errors). Finally, we give an application of our method to the well-known Nile data, which clearly shows that the type of dependence of the error process must be taken into account.