论文标题
在具有6个固定点的圆环动作的3倍上
On 3-folds having a holomorphic torus action with 6 fixed points
论文作者
论文摘要
我们研究了$ 3 $ - 折,并采用代数圆环$ t $和有限的固定点集的操作。特别是,假设圆环动作(恰好)$ 6 $固定点,我们表明的是,除了莫里纤维空间外,这种空间的拓扑也受到了严格的限制。对于$ t = \ mathbb {c}^{*} $,我们证明有两个明确的无限家庭加上有限数量的例外情况。对于$ t = \ mathbb {c}^{*} \ times \ mathbb {c}^{*} $有明确描述的$ 2 $特殊情况。
We study $3$-folds with an action of a algebraic torus $T$ and finite fixed point set. In particular, assuming the torus action has (exactly) $6$ fixed points we show that aside from Mori fibre spaces, the topology of such spaces is strongly restricted. For $T= \mathbb{C}^{*}$ we prove that there are two explicit infinite families plus a finite number of exceptional cases. For $T = \mathbb{C}^{*} \times \mathbb{C}^{*}$ there are $2$ exceptional cases which are described explicitly.