论文标题
在$ ro(g)$ - 二面二型等模学的等级系数上
On the $RO(G)$-graded coefficients of dihedral equivariant cohomology
论文作者
论文摘要
我们完全计算了普通eproivariant共同体的$ ro(g)$分级系数,其中$ g $是prime $ p> 2 $的二面订单$ 2p $,均具有恒定和伯恩赛德环系数。作者首先以$ p = 3 $证明了它,然后第二作者将其推广到任意$ p $。这些是非阿布尔群体的第一个这样的计算。
We completely calculate the $RO(G)$-graded coefficients of ordinary equivariant cohomology where $G$ is the dihedral group of order $2p$ for a prime $p>2$ both with constant and Burnside ring coefficients. The authors first proved it for $p=3$ and then the second author generalized it to arbitrary $p$. These are the first such calculations for a non-abelian group.