论文标题

基于局部光谱的非线性多族化,用于异质扩散问题

Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems

论文作者

Lee, Chak Shing, Hamon, François, Castelletto, Nicola, Vassilevski, Panayot S., White, Joshua

论文摘要

这项工作开发了一种非线性多机方法,用于通过一般非结构化网格对以细胞为中心的有限体积方法离散的扩散问题。 Multigrid层次结构是使用自由度的聚合和与聚集体相关的参考线性算子的光谱分解的聚合来构建的。对于快速收敛,重要的是,所产生的粗空间具有良好的近似特性。在我们的方法中,可以通过在粗化过程中包括更多的自由度来直接提高近似质量。此外,通过在评估非线性组件时利用局部粗化和分段组分近似,可以组装和解决粗级问题,而无需重新访问良好的水平,这是多机算法的重要元素以实现最佳的可伸缩性。介绍了将所提出的非线性多机求解器与标准单级方法(PICARD'S和NEWTON的方法)进行比较的相对性能的数值示例。结果表明,提出的求解器在效率和鲁棒性方面始终优于单级方法。

This work develops a nonlinear multigrid method for diffusion problems discretized by cell-centered finite volume methods on general unstructured grids. The multigrid hierarchy is constructed algebraically using aggregation of degrees of freedom and spectral decomposition of reference linear operators associated with the aggregates. For rapid convergence, it is important that the resulting coarse spaces have good approximation properties. In our approach, the approximation quality can be directly improved by including more spectral degrees of freedom in the coarsening process. Further, by exploiting local coarsening and a piecewise-constant approximation when evaluating the nonlinear component, the coarse level problems are assembled and solved without ever re-visiting the fine level, an essential element for multigrid algorithms to achieve optimal scalability. Numerical examples comparing relative performance of the proposed nonlinear multigrid solvers with standard single-level approaches -- Picard's and Newton's methods -- are presented. Results show that the proposed solver consistently outperforms the single-level methods, both in efficiency and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源