论文标题

机器人的能力自我评估

Robotic Self-Assessment of Competence

论文作者

Burghouts, Gertjan J., Huizing, Albert, Neerincx, Mark A.

论文摘要

在机器人技术中,主要挑战之一是机上人工智能(AI)必须处理不同或意外的环境。这样的AI代理可能是无能的,而基础模型本身可能并不意识到这一点(例如,深度学习模型通常过于自信)。本文提出了两种用于在线评估AI模型能力的方法,分别针对事先对能力的情况以及有关能力的先验知识(以语义形式)有所了解的情况。提出的方法评估当前环境是否已知。如果没有,它会要求人类提供有关其能力的反馈。如果知道环境,它可以通过从早期经验中概括来评估其能力。实际数据上的结果表明,在有时具有胜任的各种环境中移动的机器人的能力评估的优点,而在其他时候则没有能力。我们讨论了人类在机器人对其能力的自我评估中的作用,以及从人类获得加强评估的人类互补信息的挑战。

In robotics, one of the main challenges is that the on-board Artificial Intelligence (AI) must deal with different or unexpected environments. Such AI agents may be incompetent there, while the underlying model itself may not be aware of this (e.g., deep learning models are often overly confident). This paper proposes two methods for the online assessment of the competence of the AI model, respectively for situations when nothing is known about competence beforehand, and when there is prior knowledge about competence (in semantic form). The proposed method assesses whether the current environment is known. If not, it asks a human for feedback about its competence. If it knows the environment, it assesses its competence by generalizing from earlier experience. Results on real data show the merit of competence assessment for a robot moving through various environments in which it sometimes is competent and at other times it is not competent. We discuss the role of the human in robot's self-assessment of its competence, and the challenges to acquire complementary information from the human that reinforces the assessments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源