论文标题

一台能够在片上学习的原子玻尔兹曼机器

An atomic Boltzmann machine capable of on-chip learning

论文作者

Kiraly, Brian, Knol, Elze J., Kappen, Hilbert J., Khajetoorians, Alexander A.

论文摘要

Boltzmann机器(BM)是由随机触发神经元组成的神经网络,可以通过调整神经元之间的突触相互作用来学习复杂的概率分布。 BMS代表了一类非常通用的随机神经网络,可用于数据聚类,生成建模和深度学习。基于软件的随机神经网络的关键缺点是所需的蒙特卡洛采样,该采样与神经元的数量相当地缩放。在这里,我们直接在半导体黑磷的表面上直接在耦合钴原子的封闭合奏的随机自旋动力学中实现了物理实现。通过扫描隧道显微镜实施轨道记忆的概念,我们证明了原子集合的自下而上结构,其随机电流噪声是由可重构的多孔能量景观定义的。利用黑色磷的各向异性行为,我们建立了具有两个良好分离的内在时间尺度的原子合奏,代表神经元和突触。通过表征给定突触配置的神经元的条件稳态分布,我们说明合奏可以代表许多不同的概率分布。通过探测固有的突触动力学,我们揭示了突触对外部电刺激的自主重组。这种自适应架构为直接在原子级的机器学习硬件中直接进行片上学习铺平了道路。

The Boltzmann Machine (BM) is a neural network composed of stochastically firing neurons that can learn complex probability distributions by adapting the synaptic interactions between the neurons. BMs represent a very generic class of stochastic neural networks that can be used for data clustering, generative modelling and deep learning. A key drawback of software-based stochastic neural networks is the required Monte Carlo sampling, which scales intractably with the number of neurons. Here, we realize a physical implementation of a BM directly in the stochastic spin dynamics of a gated ensemble of coupled cobalt atoms on the surface of semiconducting black phosphorus. Implementing the concept of orbital memory utilizing scanning tunnelling microscopy, we demonstrate the bottom-up construction of atomic ensembles whose stochastic current noise is defined by a reconfigurable multi-well energy landscape. Exploiting the anisotropic behaviour of black phosphorus, we build ensembles of atoms with two well-separated intrinsic time scales that represent neurons and synapses. By characterizing the conditional steady-state distribution of the neurons for given synaptic configurations, we illustrate that an ensemble can represent many distinct probability distributions. By probing the intrinsic synaptic dynamics, we reveal an autonomous reorganization of the synapses in response to external electrical stimuli. This self-adaptive architecture paves the way for on-chip learning directly in atomic-scale machine learning hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源