论文标题

高斯人与统一的手段的混合物可以有几种模式?

How Many Modes Can a Mixture of Gaussians with Uniformly Bounded Means Have?

论文作者

Kashyap, Navin, Krishnapur, Manjunath

论文摘要

我们通过明确的结构表明,单变量的高斯密度$ 1 $,并在$ [ - a,a,a] $中具有$ω(a^2)$模式的混合物。这反驳了最近对Dytso,Yagli,dofor和Shamai \ cite {dyps20}的猜想,他们表明这种混合物最多可以具有$ o(a^{2})$模式,并推测上限可以将上限提高到$ o(a)$。即使对混合分布施加了额外的差异约束,我们的结果也成立。将结果扩展到更高的维度,我们在$ \ mathbb {r}^{d} $中展示了高斯人的混合物,并具有身份协方差,并在$ [ - a,a,a,a]^{d} $中,具有$ω(a^{2d})$模式。

We show, by an explicit construction, that a mixture of univariate Gaussian densities with variance $1$ and means in $[-A,A]$ can have $Ω(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai \cite{DYPS20} who showed that such a mixture can have at most $O(A^{2})$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $\mathbb{R}^{d}$, with identity covariances and means inside $[-A,A]^{d}$, that has $Ω(A^{2d})$ modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源