论文标题

关于某些组的傅立叶脉中代数的理想结构

On the ideal structure of the Fourier-Stieltjes algebra of certain groups

论文作者

Siebenand, Timo

论文摘要

我们通过$ k $理论上的障碍物确定了某些组$ g $ $ g $ b(g)$ b(g)$ funier-stieltjes代数$ b(g)的结构。适用的组是唯一的唯一不可约合的统一表示,而左规则表示中并不弱包含的组是一类表示。特别是,对于组$ \ mathrm {sl}(2,\ mathbb {r})$和$ \ mathrm {sl}(2,\ mathbb {c})$,我们认为这是这种情况。

We determine the structure of the weak*-closed $G$-invariant ideals in the Fourier-Stieltjes algebra $B(G)$ of certain groups $G$ by means of a $K$-theoretical obstruction. The groups to which this applies are groups whose only irreducible unitary representations that are not weakly contained in the left regular representation are class-one representations. In particular, this is the case for the groups $\mathrm{SL}(2,\mathbb{R})$ and $\mathrm{SL}(2,\mathbb{C})$, which we consider as explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源