论文标题
硅纳米量波导中的erbium掺杂剂
Erbium dopants in silicon nanophotonic waveguides
论文作者
论文摘要
已建立的纳米化制度与有吸引力的材料特性的结合使硅成为量子技术的有前途的材料,在该量子技术中,即使在升高的温度下,植入的掺杂剂也充当高密度和出色连贯性的Qubits。为了连接和控制这些量子位,将它们与纳米光指导中的光线接口提供了独特的希望。在这里,我们提出了这种波导中植入的Erbium掺杂剂的谐振光谱。我们克服了对较高掺杂和伴随式激发的需求,以限制早期研究。因此,我们在定义明确的晶格位点观察到Erbium掺入,一千倍降低了大约1 GHz的不均匀扩展,光谱扩散线宽向下降至45 MHz。因此,我们的研究介绍了一个新型的材料平台,用于实施片上量子记忆,微波转换和分布式量子信息处理,并具有在光纤频线通信的主要波长带中操作的独特特征。
The combination of established nanofabrication with attractive material properties makes silicon a promising material for quantum technologies, where implanted dopants serve as qubits with high density and excellent coherence even at elevated temperatures. In order to connect and control these qubits, interfacing them with light in nanophotonic waveguides offers unique promise. Here, we present resonant spectroscopy of implanted erbium dopants in such waveguides. We overcome the requirement of high doping and above-bandgap excitation that limited earlier studies. We thus observe erbium incorporation at well-defined lattice sites with a thousandfold reduced inhomogeneous broadening of about 1 GHz and a spectral diffusion linewidth down to 45 MHz. Our study thus introduces a novel materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing, with the unique feature of operation in the main wavelength band of fiber-optic communication.