论文标题

非原子匿名游戏的平衡

Equilibria of nonatomic anonymous games

论文作者

Cerreia-Vioglio, Simone, Maccheroni, Fabio, Schmeidler, David

论文摘要

我们在这里为非原子匿名游戏的文献添加了另一层,始于Schmeidler的1973年论文。更具体地说,我们定义了一种新的平衡概念,我们称之为$ \ varepsilon $估计的平衡,并证明其存在于任何正$ \ varepsilon $的存在。这个概念涵盖了非原子游戏的近期平衡概念,例如自我引起的,同伴 - 引人入胜和伯克 - 纳什。这种增强范围是我们的主要动机。同时,我们的方法还解决了Shapley指出的Schmeidler(1973)中存在的一些概念问题。在该论文中,已经证明了纯粹策略纳什均衡的存在,并在任何具有连续玩家的非原子游戏中都证明了这一点,并具有原子上无数的添加概率。但是,需要Borel的策略配置文件的可测量性可能会对玩家的选择施加一定的限制,并在\玩家的行为之间引入外源依赖性,这与非合作游戏理论的性质发生了冲突。我们建议的解决方案是将每个球员的每个子集都视为可衡量的。这导致了一种非平凡的纯粹添加剂成分,可能会阻止平衡的存在,并且需要一种新型的数学方法来证明存在$ \ varepsilon $ equilibria。

We add here another layer to the literature on nonatomic anonymous games started with the 1973 paper by Schmeidler. More specifically, we define a new notion of equilibrium which we call $\varepsilon$-estimated equilibrium and prove its existence for any positive $\varepsilon$. This notion encompasses and brings to nonatomic games recent concepts of equilibrium such as self-confirming, peer-confirming, and Berk--Nash. This augmented scope is our main motivation. At the same time, our approach also resolves some conceptual problems present in Schmeidler (1973), pointed out by Shapley. In that paper\ the existence of pure-strategy Nash equilibria has been proved for any nonatomic game with a continuum of players, endowed with an atomless countably additive probability. But, requiring Borel measurability of strategy profiles may impose some limitation on players' choices and introduce an exogenous dependence among\ players' actions, which clashes with the nature of noncooperative game theory. Our suggested solution is to consider every subset of players as measurable. This leads to a nontrivial purely finitely additive component which might prevent the existence of equilibria and requires a novel mathematical approach to prove the existence of $\varepsilon$-equilibria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源