论文标题
4d爱因斯坦 - 洛沃克黑洞:曲率订单的层次结构
4D Einstein-Lovelock black holes: Hierarchy of orders in curvature
论文作者
论文摘要
爱因斯坦 - 洛夫洛克理论包含一系列对爱因斯坦项的无限校正,并具有曲率的越来越多的能力。众所周知,对于大型黑洞,最低(高斯 - 骨网)术语是主要的,而对于较小的黑洞,较高的曲率校正变得很重要。我们将证明,如果一个人受耦合常数的正值限制,那么黑洞的动态不稳定性是在4d Einstein-Lovelock方法中较高曲率校正的有效截止的有效截止:较高的是Lovelock术语的顺序,该术语的顺序越小,持续不断的值就可以稳定稳定性,因此仅稳定性均可在几乎没有稳定性,因此仅稳定性地均可有效地实践。对于耦合常数的负值并非如此,尽管耦合常数的阈值降低,也出现了高阶项的抑制作用,但这并不能导致明显的机会忽略高阶校正。如果考虑到许多lovelock理论的顺序,则黑洞解决方案取决于大量的耦合常数,我们仅根据编码所有可观察值的两个或三个参数提出了一个紧凑的描述。
The Einstein-Lovelock theory contains an infinite series of corrections to the Einstein term with an increasing power of the curvature. It is well-known that for large black holes the lowest (Gauss-Bonnet) term is the dominant one, while for smaller black holes higher curvature corrections become important. We will show that if one is limited by positive values of the coupling constants, then the dynamical instability of black holes serves as an effective cut-off of influence of higher curvature corrections in the 4D Einstein-Lovelock approach: the higher is the order of the Lovelock term, the smaller is the maximal value of the coupling constant allowing for stability, so that effectively only a first few orders can deform the observable values seemingly. For negative values of coupling constants this is not so, and, despite some suppression of higher order terms also occurs due to the decreasing threshold values of the coupling constant, this does not lead to an noticeable opportunity to neglect higher order corrections. In the case a lot of orders of Lovelock theory are taken into account, so that the black-hole solution depends on a great number of coupling constants, we propose a compact description of it in terms of only two or three parameters encoding all the observable values.