论文标题
代表子代理作为有限细胞的缩回
Representing subalgebras as retracts of finite subdirect powers
论文作者
论文摘要
我们证明,如果$ \ mathbb a $是一个代数,相对于$ 2 $ term-term Empermutator而言,$ \ Mathbb b $是$ \ Mathbb a $的sibalgebra,则$ \ \ \ \ mthmathbb b $可代表$ \ mathbb b $,以缩回$ $ \ $ \ $ \ $ \ a $ \ a $ \ a a a $ $ \ a。
We prove that if $\mathbb A$ is an algebra that is supernilpotent with respect to the $2$-term higher commutator, and $\mathbb B$ is a subalgebra of $\mathbb A$, then $\mathbb B$ is representable as a retract of a finite subdirect power of $\mathbb A$.