论文标题

浅水方程的高阶熵稳定的不连续的盖金方法:弯曲的三角形网格和GPU加速度

High-order entropy stable discontinuous Galerkin methods for the shallow water equations: curved triangular meshes and GPU acceleration

论文作者

Wu, Xinhui, Chan, Jesse, Kubatko, Ethan

论文摘要

我们为在弯曲的三角形网格上的二维浅水方程(SWE)提供了一个高阶熵稳定的不连续的盖尔金(ESDG)方法。所介绍的方案保留了半混凝土熵的不等式,并且在连续的测深谱均保持良好平衡。我们提供数值实验,以证实该方案的高阶精度和理论特性,并根据基于简单的逐个列表(SBP)有限差异操作员进行比较的方案与熵稳定方案进行比较。最后,我们报告了图形处理单元(GPU)实现的计算性能,并提供了与四边形网格上高阶DG方法现有的GPU加速实现的比较。

We present a high-order entropy stable discontinuous Galerkin (ESDG) method for the two dimensional shallow water equations (SWE) on curved triangular meshes. The presented scheme preserves a semi-discrete entropy inequality and remains well-balanced for continuous bathymetry profiles. We provide numerical experiments which confirm the high-order accuracy and theoretical properties of the scheme, and compare the presented scheme to an entropy stable scheme based on simplicial summation-by-parts (SBP) finite difference operators. Finally, we report the computational performance of an implementation on Graphics Processing Units (GPUs) and provide comparisons to existing GPU-accelerated implementations of high-order DG methods on quadrilateral meshes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源