论文标题
使用主动学习对纳米浓缩效应进行建模
Modeling nanoconfinement effects using active learning
论文作者
论文摘要
预测页岩形成纳米孔中气体分子的空间构型对于流体流量预测和碳氢化合物储量估计至关重要。这些紧密地层的主要挑战是,大多数孔径小于50 nm。在此规模上,由于流体 - 固定相互作用增加,流体特性受纳米结构效应的影响。例如,在紧密储层中,气体吸附到孔隙壁上的85%。尽管有一些分析解决方案描述了这种现象的简单几何形状,但它们不适合描述逼真的毛孔,其中表面粗糙度和几何各向异性起着重要作用。为了描述这些,使用了分子动力学(MD)模拟,因为它们考虑了分子水平上的流体固体和流体流体相互作用。但是,MD模拟在计算上很昂贵,并且无法模拟比少数连接的纳米孔大的比例。我们提出了一种基于物理学的深度学习替代模型的方法,以快速准确地预测纳米孔内气体的分子构型。由于训练深度学习模型需要广泛的计算数据库,因此我们采用主动学习(AL)。 Al通过确定模型不确定性最大的位置,并即时运行模拟以最大程度地减少模型,从而减少了创建全面的高保真数据集的开销。所提出的工作流使纳米结构效应在中尺度上进行严格考虑,其中复杂连接的纳米孔控制了关键应用,例如碳氢化合物恢复和二氧化碳隔离。
Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.