论文标题
TAGNN:基于会话建议的目标专注图神经网络
TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation
论文作者
论文摘要
如今,基于会话的建议在许多网站中起着至关重要的作用,该网站旨在根据匿名会议来预测用户的行动。出现了许多研究,通过研究会话中项目的时间过渡,将会话模拟为序列或图形。但是,这些方法将一个会话压缩为一个固定表示向量,而无需考虑要预测的目标项目。固定向量将考虑目标项目和用户兴趣的多样性,限制推荐模型的表示能力。在本文中,我们提出了一个新的目标专注图神经网络(TAGNN)模型,以基于会话的建议。在TAGNN中,目标感知注意力适应地激活了不同目标项目的不同用户兴趣。学习的兴趣表示向量随不同的目标项目而变化,从而大大提高了模型的表现力。此外,Tagnn利用图形神经网络的力量来捕获会话中的丰富项目过渡。在现实世界数据集上进行的全面实验证明了其优于最先进方法。
Session-based recommendation nowadays plays a vital role in many websites, which aims to predict users' actions based on anonymous sessions. There have emerged many studies that model a session as a sequence or a graph via investigating temporal transitions of items in a session. However, these methods compress a session into one fixed representation vector without considering the target items to be predicted. The fixed vector will restrict the representation ability of the recommender model, considering the diversity of target items and users' interests. In this paper, we propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation. In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items. The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model. Moreover, TAGNN harnesses the power of graph neural networks to capture rich item transitions in sessions. Comprehensive experiments conducted on real-world datasets demonstrate its superiority over state-of-the-art methods.