论文标题
模拟多个上述直接检测技术,以隔离非传输热木星HD187123B的热发射
Simulating the Multi-Epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-Transiting Hot Jupiter HD187123B
论文作者
论文摘要
我们报告了6.5 $σ$从热木星hd187123b的水中检测,带有keplerian轨道速度$ k_p $ of 53 $ \ pm $ \ pm $ 13 km/s。这种高置信度检测是使用多上述,高分辨率,跨相关技术进行的,对应于行星质量为1.4 $^{+0.5} _ { - 0.3} $ $ $ M_J $和21 $ \ $ \ $ \ $ 5 $ 5 $^{\^{\ circ} $的轨道倾斜度。该技术通过将行星/恒星系统视为光谱二进制,并在整个行星轨道的多个点上获得高信噪比,高分辨率观察,以限制系统的二进制动力学运动。总共获得了七个凯克/Nirspec $ l $ band观测值的时代,在仪器升级前有五个,然后进行了两个。使用高分辨率的猩红色行星和凤凰恒星光谱模型,再加上逐条牙槽的吸收模型,我们能够通过运行可以重现的模拟,从而大大提高检测的置信度,从而消除最终可能性空间中非随机结构性噪声。预测多个上述结果的能力对于推动技术非常有用。在这里,我们使用这些仿真比较了三种不同的方法来结合高分辨率光谱的互相关,并发现Zucker 2003 Log(L)方法受我们的HD187123数据集的不需要的行星/恒星相关性影响最小。此外,我们发现在许多较低的S/N期间而不是更少的轨道上,相同的总S/N分布在轨道上,较高的S/N时期可以提供更有效的检测。这项工作提供了多上述模拟的必要验证,可用于指导未来的观察结果,并且将是研究进一步分离的,非传输系外行星的气氛的关键。
We report the 6.5$σ$ detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity $K_p$ of 53 $\pm$ 13 km/s. This high confidence detection is made using a multi-epoch, high resolution, cross correlation technique, and corresponds to a planetary mass of 1.4$^{+0.5}_{-0.3}$ $M_J$ and an orbital inclination of 21 $\pm$ 5$^{\circ}$. The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-to-noise, high resolution observations at multiple points across the planet's orbit to constrain the system's binary dynamical motion. All together, seven epochs of Keck/NIRSPEC $L$-band observations were obtained, with five before the instrument upgrade and two after. Using high resolution SCARLET planetary and PHOENIX stellar spectral models, along with a line-by-line telluric absorption model, we were able to drastically increase the confidence of the detection by running simulations that could reproduce, and thus remove, the non-random structured noise in the final likelihood space well. The ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use these simulations to compare three different approaches to combining the cross correlations of high resolution spectra and find that the Zucker 2003 log(L) approach is least affected by unwanted planet/star correlation for our HD187123 data set. Furthermore, we find that the same total S/N spread across an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient detection. This work provides a necessary validation of multi-epoch simulations which can be used to guide future observations and will be key to studying the atmospheres of further separated, non-transiting exoplanets.