论文标题
直接观察拓扑性手性半准PDGA的两个对映异构体中的依赖性的准粒子干扰
Direct observation of handedness-dependent quasiparticle interference in the two enantiomers of topological chiral semimetal PdGa
论文作者
论文摘要
最近有人提出,将手性与拓扑结合理论相结合可能会导致一类全新的费米子。这些颗粒具有不同的特性:它们出现在互惠晶格的高对称点,它们通过跨越整个布里群区域的螺旋表面费米弧连接,预计它们将在较大的能量范围内存在。此外,预计它们将在其他拓扑阶层中产生全新的效果。了解这些非常规的准颗粒如何传播和相互作用对于利用其在创新性手性驱动的装置架构中的潜力至关重要。这些方面必然依赖于两个对映异构体中手相关效应的检测,并且到目前为止仍未探索。在这里,我们使用扫描隧道显微镜可视化原子尺度上典型手性拓扑半学PDGA的两个对映体的电子特性。我们揭示了表面式连通性超出了确保拓扑费费弧的存在,但也决定了准粒子如何在杂质处传播和散布,从而导致了相反的手动量子干扰模式,与两个不同的对敌人的相反的螺旋向方向相反,直接表现出了他们的chern chern chern chern norker norkern数字的直接表现。此外,我们证明了PDGA在较大的能量范围内保持拓扑上的非平凡,从实验中检测到超过1.6 eV的能量窗口在费米水平的近距离中心。这些结果是根据此类材料中真实和相互空间中的手性之间的深层联系而合理化的,并且可以将PDGA识别为理想的拓扑性手性半学。
It has recently been proposed that combining chirality with topological band theory may result in a totally new class of fermions. These particles have distinct properties: they appear at high symmetry points of the reciprocal lattice, they are connected by helicoidal surface Fermi arcs spanning the entire Brillouin zone, and they are expected to exist over a large energy range. Additionally, they are expected to give rise to totally new effects forbidden in other topological classes. Understanding how these unconventional quasiparticles propagate and interact is crucial for exploiting their potential in innovative chirality-driven device architectures. These aspects necessarily rely on the detection of handedness-dependent effects in the two enantiomers and remain largely unexplored so far. Here, we use scanning tunnelling microscopy to visualize the electronic properties of both enantiomers of the prototypical chiral topological semimetal PdGa at the atomic scale. We reveal that the surface-bulk connectivity goes beyond ensuring the existence of topological Fermi arcs, but also determines how quasiparticles propagate and scatter at impurities, giving rise to chiral quantum interference patterns of opposite handedness and opposite spiralling direction for the two different enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV symmetrically centerd around the Fermi level. These results are rationalized in terms of the deep connection between chirality in real and reciprocal space in this class of materials, and they allow to identify PdGa as an ideal topological chiral semimetal.