论文标题
关键随机旋转链中的纠缠电气
Entanglement equipartition in critical random spin chains
论文作者
论文摘要
具有添加剂保守量的多体系统的密度矩阵的降低可以分解在可以独立分析的正交扇区中。最近,这些已被证明可以同样有助于纠缠一维的保形系统和可集成系统。在本文中,我们通过研究随机单线阶段将此电式定理扩展到无序的关键系统。我们通过分析计算该疾病平均对称性分析的rényi熵,并表明领先顺序与对称部门无关。我们的发现与数值强疾病重新归一化组中的模拟进行了交叉检查。我们还确定了第一个转向式术语打破式电气设备,该套装的形式为$ s^2/\ ln \ ell $,其中$ s $是长度$ \ ell $的子系统的磁化。
The reduced density matrix of many-body systems possessing an additive conserved quantity can be decomposed in orthogonal sectors which can be independently analyzed. Recently, these have been proven to equally contribute to entanglement entropy for one dimensional conformal and integrable systems. In this paper, we extend this equipartition theorem to the disordered critical systems by studying the random singlet phase. We analytically compute the disorder averaged symmetry resolved Rényi entropies and show the leading orders are independent of the symmetry sector. Our findings are cross-checked with simulations within the numerical strong disorder renormalization group. We also identify the first subleading term breaking equipartition which is of the form $s^2/\ln\ell$ where $s$ is the magnetization of a subsystem of length $\ell$.