论文标题

亚皮木树中的最大解离集

Maximum dissociation sets in subcubic trees

论文作者

Zhang, Lei, Tu, Jianhua, Xin, Chunlin

论文摘要

图$ g $中的一个子集在最大分解范围内诱导顶点学位的子图最多1,而该子集具有最大基数,则称为最大解离集。 $ g $的解离数是$ψ(g)$表示的,是最大解离集的基数。一棵亚客树最多是最高学位的树。在本文中,我们在$ n $的订单亚地带树中的离解数下降和上限,并表明,$ n $ of Croubic Tree $ n $的最大离心套件的数量和分离数$ψ$的最大分离集数量最多为$ 1.466666666^4n-nn-nn-n-5β+2} $。

A subset of vertices in a graph $G$ is called a maximum dissociation set if it induces a subgraph with vertex degree at most 1 and the subset has maximum cardinality. The dissociation number of $G$, denoted by $ψ(G)$, is the cardinality of a maximum dissociation set. A subcubic tree is a tree of maximum degree at most 3. In this paper, we give the lower and upper bounds on the dissociation number in a subcubic tree of order $n$ and show that the number of maximum dissociation sets of a subcubic tree of order $n$ and dissociation number $ψ$ is at most $1.466^{4n-5ψ+2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源