论文标题
关于第二个Painlevé方程的连接问题,并具有大量初始数据
On the connection problem for the second Painlevé equation with large initial data
论文作者
论文摘要
我们使用Bassom等人提出的均匀渐近学方法考虑了第二个Painlevé方程(PII)的连接问题的两个特殊情况。我们将PII的真实解决方案分类在负(正)真实轴上相对于其初始数据。通过产品,通过得出Stokes倍增器的渐近行为,给出了Bender和Komijani最近在真实轴上与PII非线性特征值问题相关的严格证明。
We consider two special cases of the connection problem for the second Painlevé equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers.