论文标题
从稀缺数据中了解理性方程的物理信息
Physics-informed learning of governing equations from scarce data
论文作者
论文摘要
利用数据来发现描述复杂物理系统行为的基本管理法律或方程,可以显着提高我们对各种科学和工程学科中此类系统的建模,模拟和理解。这项工作介绍了一个新颖的物理知识深度学习框架,以从稀缺和嘈杂数据的非线性时空系统中发现局部偏微分方程(PDE)。特别地,这种方法无缝地整合了深神经网络的优势,以进行丰富的表示学习,物理嵌入,自动分化和稀疏回归,以(1)近似于系统变量的解决方案,(2)计算基本衍生物,(3)确定构成pDes表达的结构和表达的键入术语和参数。在数字和实验上,在发现各种数据稀缺和噪声方面的多种PDE系统时,都证明了这种方法的功效和鲁棒性。最终的计算框架显示了在大而准确的数据集可捕获的实际应用中闭合形式模型发现的潜力。
Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to (1) approximate the solution of system variables, (2) compute essential derivatives, as well as (3) identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.