论文标题
临界和haldane相中的各向同性自旋1链的低能物理学
Low-energy physics of isotropic spin-1 chains in the critical and Haldane phases
论文作者
论文摘要
使用具有无限边界条件的基质产物状态算法,我们在热力学极限中计算高分辨率的动态自旋和四极结构因子,以探索各向同性双线性双线性 - 骨化性旋转1链的低能激发。 Haldane将Spin-1 Heisenberg Antiferromagnet映射到了连续的场理论,即非线性Sigma模型(NL $σ$ M)。我们发现NL $σ$ M无法捕获双Quadratic术语的影响,并且仅提供对Haldane相理物理学的不满意的描述。但是,在非交互的多麦克农态可以解释Haldane相中的几个特征。 Uimin-Lai-Sutherland Point的物理学的特征是多苏利顿连续。进入扩展的关键阶段,我们发现这些激发连续合同,我们使用现场理论描述来解释。新的激发在较高的能量上出现,在纯粹的生物位点附近,它们显示出简单的余弦分散体。使用块保真度,我们将它们识别为基本的一颗粒子激发,并将其与可集成的Temperley-Lieb链相关联。
Using a matrix product state algorithm with infinite boundary conditions, we compute high-resolution dynamic spin and quadrupolar structure factors in the thermodynamic limit to explore the low-energy excitations of isotropic bilinear-biquadratic spin-1 chains. Haldane mapped the spin-1 Heisenberg antiferromagnet to a continuum field theory, the non-linear sigma model (NL$σ$M). We find that the NL$σ$M fails to capture the influence of the biquadratic term and provides only an unsatisfactory description of the Haldane phase physics. But several features in the Haldane phase can be explained by non-interacting multi-magnon states. The physics at the Uimin-Lai-Sutherland point is characterized by multi-soliton continua. Moving into the extended critical phase, we find that these excitation continua contract, which we explain using a field-theoretic description. New excitations emerge at higher energies and, in the vicinity of the purely biquadratic point, they show simple cosine dispersions. Using block fidelities, we identify them as elementary one-particle excitations and relate them to the integrable Temperley-Lieb chain.