论文标题

使用Copulas建模动脉旅行时间分布

Modelling arterial travel time distribution using copulas

论文作者

Samara, Adam, Rempe, Felix, Göttlich, Simone

论文摘要

旅行时间分布(TTD)的估计对于可靠的路线指导至关重要,并为高级交通管理和控制提供了理论基础和技术支持。估计动脉TTD的最新方法通常假设路径行进时间遵循某个分布而不考虑段相关。但是,这种方法通常是不现实的,因为连续段的旅行时间可能取决于。在这项研究中,Copula函数用于模拟动脉TTD,因为Copulas能够合并以进行段相关。首先,使用宝马集团提供的日常GPS数据对德国慕尼黑的一项主要城市动脉提供的日常GPS数据进行经验研究。使用有限的高斯混合模型(GMM)估算片段TTD。接下来,引入了几种Copula模型,即高斯,Student-T,Clayton和Gumbel,以建模段TTD之间的依赖性结构。通过最大对数可能性估计获得每个副群模型的参数。然后,根据Copula模型估算了由连续段TTD组成的路径TTD。通过研究越来越多的聚合链接的性能来评估模型的可伸缩性。最佳的拟合配置套是根据拟合优点测试确定的。结果表明,与卷积相比,提出的copula模型对于越来越多的汇总段的优势而没有结合段相关性。

The estimation of travel time distribution (TTD) is critical for reliable route guidance and provides theoretical bases and technical support for advanced traffic management and control. The state-of-the art procedure for estimating arterial TTD commonly assumes that the path travel time follows a certain distribution without considering segment correlation. However, this approach is usually unrealistic as travel times on successive segments may be dependent. In this study, copula functions are used to model arterial TTD as copulas are able to incorporate for segment correlation. First, segment correlation is empirically investigated using day-to-day GPS data provided by BMW Group for one major urban arterial in Munich, Germany. Segment TTDs are estimated using a finite Gaussian Mixture Model (GMM). Next, several copula models are introduced, namely Gaussian, Student-t, Clayton, and Gumbel, to model the dependent structure between segment TTDs. The parameters of each copula model are obtained by Maximum Log Likelihood Estimation. Then, path TTDs comprised of consecutive segment TTDs are estimated based on the copula models. The scalability of the model is evaluated by investigating the performance for an increasing number of aggregated links. The best fitting copula is determined in terms of goodness-of-fit test. The results demonstrate the advantage of the proposed copula model for an increasing number of aggregated segments, compared to the convolution without incorporating segment correlations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源