论文标题

最小基质产物状态和平均场和Geminal波函数的概括

Minimal matrix product states and generalizations of mean-field and geminal wavefunctions

论文作者

Larsson, Henrik R., Jiménez-Hoyos, Carlos A., Chan, Garnet Kin-Lic

论文摘要

低计算成本的简单波形,但可以在整个势能表面(PES)中实现定性准确性(PES)与电子结构的许多领域以及对动力学的应用相关。在这里,我们探索了一类简单的波形,即最小矩阵乘积状态(MMP),它们概括了许多常用中的许多简单波函数,例如投影的平均场波函数,Geminal波浪函数和广义价值键状态。通过检查MMPS在某些原型系统的PESS上的性能,我们发现它们在整个PES中产生良好的定性行为,通常在上述Ansätze上显着改善。

Simple wavefunctions of low computational cost but which can achieve qualitative accuracy across the whole potential energy surface (PES) are of relevance to many areas of electronic structure as well as to applications to dynamics. Here, we explore a class of simple wavefunctions, the minimal matrix product state (MMPS), that generalizes many simple wavefunctions in common use, such as projected mean-field wavefunctions, geminal wavefunctions, and generalized valence bond states. By examining the performance of MMPSs for PESs of some prototypical systems, we find that they yield good qualitative behavior across the whole PES, often significantly improving on the aforementioned ansätze.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源