论文标题

高级Lipschitz函数的多芯片分析

Polyanalytic Hardy decomposition of higher order Lipschitz functions

论文作者

Blaya, Ricardo Abreu, Toranzo, Lianet De la Cruz

论文摘要

本文关注的是,在封闭的Jordan曲线$γ$上分解高阶Lipschitz函数的问题是在由$γ$定义的每个开放域中的两个多芯片分析函数的总和。我们的基本工具是与多芯片函数理论产生的单数积分运算符相关的强壮预测,在这里证明,它代表了高级Lipschitz类中的一个参与操作员。我们的结果概括了持有人连续函数在域边界上的经典强化分解。

This paper is concerned with the problem of decomposing a higher order Lipschitz function on a closed Jordan curve $Γ$ into a sum of two polyanalytic functions in each open domain defined by $Γ$. Our basic tools are the Hardy projections related to a singular integral operator arising in polyanalytic function theory, which, as it is proved here, represents an involution operator on the higher order Lipschitz classes. Our result generalizes the classical Hardy decomposition of Holder continuous functions on the boundary of a domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源