论文标题

网络中非背心中心性的定位及其物理后果

The localization of non-backtracking centrality in networks and its physical consequences

论文作者

Pastor-Satorras, Romualdo, Castellano, Claudio

论文摘要

非折线矩阵的频谱在确定网络系统的各种结构和动力学特性中起着至关重要的作用,范围从键渗透的阈值和非循环流行过程到社区结构到节点的重要性。在这里,我们计算非背带矩阵的最大特征值和无关随机网络相关的非折线中心性,发现表达式与数值结果非常吻合。但是,我们表明,相同的公式对于许多现实世界网络都无法正常工作。我们确定了导致这种违规的机制,该机制在网络子图上的非背心中心性定位中,其在不相关的网络中极不可能形成,但在现实世界结构中很常见。利用这些知识,我们为最大的特征值提供了一个启发式的广义公式,对于大型经验数据集的所有网络来说,这是非常准确的。我们表明,这种新发现的本地化现象允许了解许多现实世界结构中渗透阈值的消息预测的失败。

The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community structure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源