论文标题

学习通用的欺骗提示,用于抗泡沫

Learning Generalized Spoof Cues for Face Anti-spoofing

论文作者

Feng, Haocheng, Hong, Zhibin, Yue, Haixiao, Chen, Yang, Wang, Keyao, Han, Junyu, Liu, Jingtuo, Ding, Errui

论文摘要

许多现有的面部反欺骗(FAS)方法着重于为某些预定义的SPOOF类型的决策边界建模。但是,包括未知的欺骗样本的多样性阻碍了有效的决策边界建模,并导致概括能力较弱。在本文中,我们以一种异常检测的观点重新重新进行了FAS,并提出了一个残留的学习框架,以学习定义为欺骗提示的歧视性实用差异。所提出的框架由一个欺骗提示发生器和辅助分类器组成。发电机可以最大程度地减少实时样本的欺骗提示,而对欺骗样本的欺骗性构成不明确,以使其概括地概括为看不见的攻击。通过这种方式,对异常检测被隐式用于指导欺骗提示产生,从而导致歧视性特征学习。辅助分类器用作欺骗提示放大器,使欺骗提示更具歧视性。我们进行广泛的实验,实验结果表明,所提出的方法始终优于最新方法。该代码将在https://github.com/vis-var/lgsc-for-fas上公开获取。

Many existing face anti-spoofing (FAS) methods focus on modeling the decision boundaries for some predefined spoof types. However, the diversity of the spoof samples including the unknown ones hinders the effective decision boundary modeling and leads to weak generalization capability. In this paper, we reformulate FAS in an anomaly detection perspective and propose a residual-learning framework to learn the discriminative live-spoof differences which are defined as the spoof cues. The proposed framework consists of a spoof cue generator and an auxiliary classifier. The generator minimizes the spoof cues of live samples while imposes no explicit constraint on those of spoof samples to generalize well to unseen attacks. In this way, anomaly detection is implicitly used to guide spoof cue generation, leading to discriminative feature learning. The auxiliary classifier serves as a spoof cue amplifier and makes the spoof cues more discriminative. We conduct extensive experiments and the experimental results show the proposed method consistently outperforms the state-of-the-art methods. The code will be publicly available at https://github.com/vis-var/lgsc-for-fas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源