论文标题

使用等级相关性从财务回报中建造最小跨越树木

Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation

论文作者

Millington, Tristan, Niranjan, Mahesan

论文摘要

相关矩阵的最小跨越树木(MST)是一种经常使用的方法来研究金融市场的关系。但是,关于该主题的大多数工作倾向于使用Pearson相关系数,该系数依赖于正常性的假设,并且可能脆弱,并且可能是异常值的存在,这都不是研究财务回报的理想选择。在本文中,我们使用Pearson和两种等级相关方法(Spearman and Kendall的$τ$)研究了美国,英国和德国财务回报的MST的推断。使用这些等级方法构建的MST往往更稳定,并且比使用Pearson相关性构建的MST在数据集上保持更多的边缘。皮尔逊和等级MST之间的边缘一致性取决于市场状况,但级别MST通常始终表现出强烈的一致性。偏离单变量正态性可能与相关矩阵的变化有关,但与MST的变化更加困难。与系数无关,树木倾向于具有相似的拓扑结构。由MST相关矩阵构建的投资组合的营业额比大型市场的完整协方差矩阵中的投资组合的营业额较小,但对于较小的德国市场而言。使用Bootstrap方法,我们发现使用秩相关构建的相关矩阵更稳定,但是MST的稳健性之间几乎没有差异。

The construction of minimum spanning trees (MSTs) from correlation matrices is an often used method to study relationships in the financial markets. However most of the work on this topic tends to use the Pearson correlation coefficient, which relies on the assumption of normality and can be brittle to the presence of outliers, neither of which is ideal for the study of financial returns. In this paper we study the inference of MSTs from daily US, UK and German financial returns using Pearson and two rank correlation methods, Spearman and Kendall's $τ$. MSTs constructed using these rank methods tend to be more stable and maintain more edges over the dataset than those constructed using Pearson correlation. The edge agreement between the Pearson and rank MSTs varies significantly depending on the state of the markets, but the rank MSTs generally show strong agreement at all times. Deviation from univariate normality can be related to changes in the correlation matrices but is more difficult to connect to changes in the MSTs. Irrelevant of coefficient, the trees tend to have similar topologies. Portfolios constructed from the MST correlation matrices have a smaller turnover than those from the full covariance matrix for the larger markets, but not for the smaller German market. Using a bootstrap method we find that the correlation matrices constructed using the rank correlations are more robust, but there is little difference between the robustness of the MSTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源