论文标题

对抗图形的嵌入,以实现社交网络的最大化的公平影响

Adversarial Graph Embeddings for Fair Influence Maximization over Social Networks

论文作者

Khajehnejad, Moein, Rezaei, Ahmad Asgharian, Babaei, Mahmoudreza, Hoffmann, Jessica, Jalili, Mahdi, Weller, Adrian

论文摘要

影响最大化是网络科学中广泛研究的主题,其目的是达到最大可能的节点数量,而仅针对一组初始的个体。它在许多领域都有关键的应用,包括病毒营销,信息传播,新闻传播和疫苗接种。但是,该目标通常不考虑最终影响的节点在敏感属性(例如种族或性别)方面是否公平。在这里,我们解决了公平影响力的最大化,旨在更加公平地到达少数民族。我们介绍了对抗图的嵌入:我们共同训练图形嵌入的自动编码器,并识别识别敏感属性的歧视器。这会导致嵌入,这些嵌入类似地分布在敏感属性上。然后,我们通过聚集嵌入来找到一个良好的初始集。我们认为,我们是第一个使用嵌入的人来实现公平影响最大化的任务。尽管公平性和影响最大化目标之间通常存在权衡,但我们对合成和现实世界数据集的实验表明,我们的方法会大大降低差异,同时与最先进的影响最大化方法保持竞争力。

Influence maximization is a widely studied topic in network science, where the aim is to reach the maximum possible number of nodes, while only targeting a small initial set of individuals. It has critical applications in many fields, including viral marketing, information propagation, news dissemination, and vaccinations. However, the objective does not usually take into account whether the final set of influenced nodes is fair with respect to sensitive attributes, such as race or gender. Here we address fair influence maximization, aiming to reach minorities more equitably. We introduce Adversarial Graph Embeddings: we co-train an auto-encoder for graph embedding and a discriminator to discern sensitive attributes. This leads to embeddings which are similarly distributed across sensitive attributes. We then find a good initial set by clustering the embeddings. We believe we are the first to use embeddings for the task of fair influence maximization. While there are typically trade-offs between fairness and influence maximization objectives, our experiments on synthetic and real-world datasets show that our approach dramatically reduces disparity while remaining competitive with state-of-the-art influence maximization methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源