论文标题
ST-MNIST-尖峰触觉MNIST神经形态数据集
ST-MNIST -- The Spiking Tactile MNIST Neuromorphic Dataset
论文作者
论文摘要
触觉感应是智能机器人的一种基本方式,因为它使它们能够在环境中与物理对象灵活相互作用。电子皮肤的最新进展导致了开发数据驱动的机器学习方法,从而利用这种重要的感官方式。但是,用于训练此类算法的当前数据集仅限于标准同步触觉传感器。主要是由于基于大规模事件的触觉传感器缺乏基于神经形态事件的触觉数据集。具有此类数据集对于处理基于时空事件数据的新算法的开发和评估至关重要。例如,评估基于常规框架数据集上的尖峰神经网络被认为是最佳选择。在这里,我们首次亮相了一个新颖的神经形态尖峰触觉MNIST(ST-MNIST)数据集,该数据集包括由人类参与者获得的手写数字,这些数字是由人类参与者撰写的。我们还描述了使用现有的人工和尖峰神经网络模型评估我们的ST-MNIST数据集的初步努力。本文提供的分类精度可以作为未来工作的性能基准。我们预计我们的ST-MNIST数据集将是有趣的,对神经形态和机器人研究社区有用。
Tactile sensing is an essential modality for smart robots as it enables them to interact flexibly with physical objects in their environment. Recent advancements in electronic skins have led to the development of data-driven machine learning methods that exploit this important sensory modality. However, current datasets used to train such algorithms are limited to standard synchronous tactile sensors. There is a dearth of neuromorphic event-based tactile datasets, principally due to the scarcity of large-scale event-based tactile sensors. Having such datasets is crucial for the development and evaluation of new algorithms that process spatio-temporal event-based data. For example, evaluating spiking neural networks on conventional frame-based datasets is considered sub-optimal. Here, we debut a novel neuromorphic Spiking Tactile MNIST (ST-MNIST) dataset, which comprises handwritten digits obtained by human participants writing on a neuromorphic tactile sensor array. We also describe an initial effort to evaluate our ST-MNIST dataset using existing artificial and spiking neural network models. The classification accuracies provided herein can serve as performance benchmarks for future work. We anticipate that our ST-MNIST dataset will be of interest and useful to the neuromorphic and robotics research communities.